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I. INTRODUCTION

The aim of this paper is to study the convergence of the random quadratic forms

of the form

(1.1) Z; fjijMk

where (fsk)’ j,k=1,2,3,..., is a real infinite matrix and (Mj), j=1,2,..., is a
sequence of i.i.d. p-stable random variables with characteristic function exp(-|t|P),
0<p<2. Our results have obvious implications in the theory of double Wiener-type
integrals of the form
If £(x,y)M(dx)M(dy)

where M(x) is a p-stable motion (cf. Szulga and Woyczynski (1983)). We shall study
them elsewhere.

We begin with a characterization of non-anticipating sequences (Vk) such that

the "mirtingale" transform

T=1VM

converges almost surely, The necessary and sufficient condition here turns out to
be IVklp<°° a.s., and moreover T converges a.s. exactly on the set (ZIVklp«n)
(Theorem 2.1). This applied to the sequence

k-1

32 £
=1

\/

k kM

shows that the convergence of the off-diagonal part of the iterated sum

L) £5,M0M

k j<k
is equivalent to the matrix operator (fjk)§<k being ep-radonifying from £9 into
£ (Theorems 2.2 and 3.1).
Finally we characterize the class of ep-radonifying operators (fjk)T from

£9 into £P as satisfying the condition
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, (Corollary 2.2). The proof of necessity of this condition was shown to us by Gilles
gi Pisier and is included here with his permission. -
%, The above results permit the full characterization of all matrices (fjk) for

; which the quadratic form (1.1) converges a.s. (Theorem 4.2). Ve would also like to

?4 mention here that the infinite quadratic forms satisfy a fairly general 0-1 law
\2, (cf. de Acosta (1976)).

. Our results should be compared with the case where the Mj's are i.i.d.
{é Gaussian, i.e., when p=2., In this case Varberg (1966) has shown that the conver-

% gence of the series Xk fkk and Xjk f?k is necessary and sufficient for the quadra-

o | tic mean convergence of (1.1), and the above conditions imply a.s. convergence of
:; (1.1) as well, Moreover Lemma 3.7 of Rosinski and Szulga (1983) in conjunction
‘g; with Kahana's (1968) inequality shows that the conditions are also necessary for i
R a.s. convergence of the Gaussian quadratic form.

Eﬁ In Section 5 we include some auxiliary results and a conjecture of indepen- -
;g dent interest.
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2. MARTINGALF TRANSFORMS AND CONVERGENCE OF STABLE TRIANGULAR QUADRATIC FORMS

ER

THEOREM 2.1. Let V =vk(Ml" ces Mk-l) » k=2,3,..., be a non-anticipating sequence

k
of random variables. Then almost surely

: ~W§“‘f ".; =

{y VM converges} = {) |Vk|p<°°} .

3 £: Let F, =o(M,,..., M), and
} Proo Le X ( 1 k) a

‘ G(x) = P{ |M1| >x}~exP |

N as x>, c>0. Also let us set

N A={) v converges},

o L Vi g

B={) |vk|"<m}

?f and

Cn={|VnMn| >1} , n=2,3,...

. Then we have that
5‘.’ . AC{C-io}c={y P(C_|F_.) <=} a.s

e . n : n' n-1 3

B

‘ZE where the equality is implied by a conditional form of a Borel-Cantelli lemma
q (cf. Breiman (1968), p. 96). Since

L P(C IF ) =6/|v ),

¥ we get that G(|Vn|'1) +0 a.s. on A as n+», Therefore, for sufficiently large N =N(w),
. [+ [ <]

, 2 -1

Y IivPs 2 T oelv ™) <o

‘5 n=N 1 € n=N n

3 a.s. on A. This shows that P(A\B) =0.

: Now we shall prove that P(B\A) =0, Let 'nn=1rn(°,w) be a regular conditional

v

VY - distribution of VM given F_ .. We have that

: nn n-1

ol

.y ma(Esw) =P(V M e ElMl,. aM )= up(vn (w) E)

where up is the distribution of M]. By a theorem of Hill (1982), X Vn(m)Mn(w)

converges for almost all w's for which the series {xf\“’) converges in probability
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i P', where {X'(‘w) (w*)} is a sequence of independent r.v.'s (defined on another proba-
Y

i bility space (Q',P')) with distributions {ﬂn(-,w)}. In our case the xr(‘w) 's have
X characteristic functions exp(-lvn(w) IPtP) . Thus P(B\A) =0 which completes the
i
K 3 proof of the theorem. M
ﬂ Theorem 2.1. enables us to translate the problem of a.s. convergence of quadratic
* forms into a more tractable problem of the a.s. convergence of series of independent
;‘ random vectors with values in l’.p, whose standard basis is denoted by (ek) , k=1,2,....
THEOREM 2.2. Let (f.k:l <j<k-1, k22) be a triangular matrix of real numbers, and
WA def )
% e .
- X, O8(0,eeny 008, S uEl ) = B E 8 G2, . Then
By

] ( T £.M,)
o k=2 j=1 K "
R
‘5 converges a.8. if and only if for every j=1,2,..., xj € £ and the vector random
RE
st series ) x;M; converges a.s. in £P,
ﬁ Proof: Setting Vk =Zl;__'_i fjij’ k=2,3,..., V1 =0, by Theorem 2.1 we have that
5:,',"
St the series ) V.M, converges a.s. if and only if Zlvk|p<°° a.s., which is equivalent
<% |
24

’ to the a.s. convergence in £P of the series ] eV

4 ..
":_4 Now assume that S = Eekvk converges a.s. in £P. since
1
X4 nil 121 nil

' e ( f..e )M

k=1 j=1 k=j+1 I K
n+l .
Proposition 5.1 applied to x, in zk-pl &> and YJ Mj’ gives that

f

x € £P as n+», and that the series x;M; converges a.s. in el

> -)'°°
jn” %5 % lk=je1 k%
= P in pP
Qonversely, assume that xj Z:=j+1 fjkekel and 2 ijj converges a.s. in £V.

The operator

LPrx+R (x)= ¥ <x ,e>e P, p>o,
n K=n+2 k" "k

is continuous and linear and Rn(x) >0 in £P for every x as n+«, Thus a.s.

-
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o+R(2xM)=2 R, (x;)M, = 2( f..oe M, + XM, .
n J=l -lkz 5L j=xz\+1JJ

Hence,

n on
- . YO ) f.e)M. 0
| j=1 k=ns2 X K75
a.s. in £P as n+>«_  and thus
I n+l1 n n o

L vke“:jzlijj A £ooM;

converges a.s. in £P, a
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N : 3. CONVERGENCE OF p-STABLE RANDOM SERIES IN £P

E

N AND ep-RADONIFYING OPERATORS
:;*1 Definition 3.1. Let 0<p<2 and F be a continuous linear operator F:s —>£p,
&
" where s is the space of sequences with finite support for 0<p<1 and s =£q,
1/q+1/p=1, for 1<p<2. We shall write F=(f. ) where f., =<Fe,,e >, j,k=1,2,...,
e jk jk i’k
‘ so that Fe:i =Xk fjkek' We say that F is.in the class lplogf.(l.p) if for each
,‘” j=1,2,..., I-'ej e LP and the £P_valued sequence (Fej) is in I,plogl. In other words,
] Fe£Plogt(£P) if and only if
NCF) = § [Fe, [IP(1 + |10g]IFe. || P |)
g‘ ' j 17p j'p
e

= P ' P o
§ {(E ,‘fjkl )(1+Il°g]§ ,fjkl |)}< .

One can introduce on I.plogl(lp) -anOrlicz type norm in the natural fashion.

- ‘l p 3 -
THEOREM 3.1. Let 0<p<2 and x, -Z:gl fio < Lf, j=1,2,... . Then ijnj
eonverges a.s. in 2P if and only if Fl = (fjk)T € Lplogl(l.p) .

&s | Proof: Sufficiency. Assume FTel,PlogI,(I_p). We shall prove that the assumptions
of Proposition 5.2 are fulfilled for the series with general term W = lijfjknjlp’
which has the same distribution as (ijlfjk|p) |M1|p. Indeed,
B
?; )
E. ) P(wk>l) =) P(|M1| > () |f,k|p) l/P) < Const )) If.k|p<°°
k k i) jk )
* since, by assumption, Ekijlfjklp“o and zjlfjklp*o as k+», Therefore (5.1) of
N
e Proposition 5.2 is satisfied.
2 Now,
5 B=] E(W 1N, s 1)} =J(TI£,, IPYECIM, [PICIM, | s (3)€., [Py 1/Py),
5 k" 'k 2 jk 1 1 | 3
k kj j
.*91@'"
a Denoting the distribution function of }lll by ¢, we get that for a>1

|
2 [31ulPdao(u) 51 +aPoca) - o(1) - [SpuP~lo(uydu |
|
|
|




< 1+aPo@) -o(1) - [3pu®l (1 - (cvP))du

since ¢(u) =1 - P(|M1| >u) 21-CuP for uz1 and certain constant C. Thus because

up(tb(a) - 1) remains bounded
[:Iulpd(b(u) sConst (1 +loga).

it follows that

B < Const ])(: g Ifjklp(l + |1°8§ Ifjklpl) <w

so that Condition (5.2) of Proposition 5.2 is also satisfied and as a result

Xklij fjijlpntw‘a.s. It follows that zk():j fjkM.)ek converges a.s. in £F and in

)
view of x; =2k fjkek_ € £P, we have that Ej ijj converges a.s. in £F.

Necessity. (The basic idAea here is due to Pisier). Assume that Z ijj =X (Fej)Mj
converges in Lp a.s. By the representat‘ion for stable processes obtained in Proposition
1.5 of Marcus and Pisier (1983) and used here in the discrete paramater case (in the
case of 1sp<2, Corollary 3.of LePage, Woodroofe and Zinn (1981) would suffice)}_'ijj con-
verges in £P a.s. if*and only if eJ.YJ.I‘j'l/P converges a.s. in £P, where (ej) arc

independent Bernoulli r.v.'s, (Yj) are i.i.d. r. elements in £P with law

, 351,2,...,

x /x|l

. . N _.-u
and I‘j -xl + ... +xk where xl,xz... are 1.i.d._ with l’()(1 >u) =e . Moreover the

sequences (ej),(Yj),(I‘j) are independent of each other. By the law of large numbers,

L(YJ.) =Const Zk lekllpd

I'j/j +1 a.,s. Applying twice Fubini's theorem and the comparison principle in quasi-

normed spaces obtained in Theorem 4.4 of Marcus and Woyczynski (1979), we get that
M -
33 3?
useful about the latter series is that it possesses all moments in contrast to the

the series § x.M, converges in £P a.s. if and only if § e;Y /P goes. What is

former.
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3.3

Therefore for 0<p<2, and xj =Fej, j=1,2,...,

-1
= > Bl VPegy, |2 L5 TPev IP
(2.2) > Const J E(J j-2/pY§k)p/ 2
k 3j

2 Const § E(supJ 1/p|\' |)p
k

j

i i ' i i = . a9 -
by Khintchine's inequality (Yj (le,sz, ))

If C denotes the class of all stopping times, then for all k,

Elsupjl/pY |p>sug Et” |Y |p>Const EC|Y k|p10g|Y1k|)
j Te

by Chow, Robbins § Siegmund (1971), p. 97 , where the last constant can be choscn

greater than 0 (uniformly in k), since in our case

L(Y. k) = Const 2 ||Fe1”p <Fe Bk>“Fe llp )

Therefore p 1
£, ) €55 p

¥ 1 5 log > liFe._ ||

i Fe.

e IIB T ke, IIP

B(lY, ) 1Progly, ) =

so that finally we get from (2.2) that
o eyl
LT 57 108 —1——— <
kj £, 1P
k

which certainly implies that F' ¢ £Plogt(£P). N

COROLLARY 3.1. Let [, Ifjk|p<°°. Then ;jlzkfjkr'll(lp<°° a.s. if and only if
DRTOA L TCRRI N LI VRLS

Now let 1 <ps2 and let ep be a cylindrical measure on Lq, 1/p+1/a=1,
generated by the sequence M= (Mi)’ i=1,2,... . The characteristic functional of

Op is given by the formula

i<x.y> l ”p p ’
[ &%y bp(dy) =e P, xetP |

$¢-'* ) \, -._\ _'-‘_‘-. "..'-:. -:_'-_"~:_' ¥ e - e [

J‘ "‘\ "f.i.



Definition 3.2. Let E be a Banach space. A linear operator F:89+E is called

ﬁp-radonifying if exp(-|| F*y* "g), y* € E*, i8 the characteristic functional of a

Radon measure on E. We denote by Rp((q,E) the class of all such operators.

The class RZ(ZZ,E) has been extensively studied. The main result is that
Ilz(lz,ﬁ) =R2(£2,E) if and only if E is of cotype 2 (cf. Linde and Pietsch (1974)),
where Hp denotes the ideal of all p-absolutely summing operators. For 1<p<2
it has been proved that if 1<r<p then Hr(l.q,E) c Rp(l’.q,E)_, and that
llp(Lq,E) c Rp(tq,E) if and only if E is isomorphic to subspace of LP and is of
stable type p (cf. Linde, Mandrekar, Weron (1980), and Thang and Tien (1982)).

From the now classical results due to It3 and Nisio (1968) it is easy to deduce

the following.

THEOREM 3.2. Let 1<ps 2. The following are equivalent:
(a) Fe Rp(lq,E);

(b) Fx:E*>1tP is decomposable in the semse that there existe an E-valued,
strongly measurable random vector (FM) such that
<F*y* M>= <y* FM> a.s.,l y* € E*;
(¢) The series ) F(ej)Mj converges a.s. in E, where (ej) i8 the standard

basis in £9 .

The above equivalences are heuristically better understood if one keeps in mind

the following "identities':

. 3 * *, S - L 2ve 3 P
°1<T*y*’M>=Ee1,2kMk<T Y*se, e 2k|<'l‘ y .ek>|. _

=e

ey [P
: II)’llp.

In view of the above remarks every r-absolutely summing F, 1<r<p, is ep-
radonifying, but there are p-absolutely summing F:£9+£P which are not ep-radonifying
since £P is not of stable type p. The corollary below, obtained immediately from

Theorems 3.1 and 3.2, reflects this fact and gives an analytic description of ep-
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radonifying operators F from 29+ 2P,

COROLLARY 3.2. [Rp(tq,Lp)]Tslplogl(lp) .
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4. CONVERGENCE OF GENERAL QUADRATIC FORMS IN p-STABLE RANDOM VARIABLES

Let
n

n
=) ) f. MM, n=1,2,...,
Wl gk
where (M;), j=1,2,..., are as above i.e. i.i.d. with Eexp(itM,) = exp(-|t|P),
0<p<2, Denote the diagonal and off-diagonal parts of Qn respectively by

n

- 2 -
Dn-kzlfkkMk and R =

)
f.,M.M, .
k,j=1 KT

k#j
The diagonal part, being a series of independent random variables, is easy to

handle.

THEOREM 4.1. The sequence (Dn) converges a.s. as n+« if and only if
Meaa Vg7 <

Proof. Let us observe that ) P(]fkk]M:>1) <o if and only if } lfkklp/2<m .
Kolmogorov's three series theorem gives now the "only if' part of the claim. The

proof of the "if" part follows directly from Proposition 5.2 because for p<2 and fkk#O,
2 2 g -1 p/2;1_-p/2,, _ p/2
E)£, IM1(1£, 1M <1) = [oPO2 >l ihdes el £, 1P/ %[t P 2ae = const |£,, [P/2. 0
The above result and the results of previous sections give the following.
THEOREM 4.2. The sequence of quadratic‘ forms (Qn) converges aq.s. as n>x if
and only if
LS L
K= kk
and

o k-1 k-1
P Pjy <o
kzz{(jgl €5 + £i5 )(1+Ilosjgllfjk+fkjl )<= .

Proof: The above result is a straightforward corollary to Theorems 4.1, 2.2,

and 3.1 and to the fact that the sequence (Qn) converges a.s. if and only if both
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sequences (Dn) and (Rn) converge a.s. We prove the only if part of this latter
assertion.
Let a,b be reals with a#0, and set € =sign(b/a). Then for M=Ml’ we have
2 2 2
P{|aM” +bM| > 1} = P{|a(eM)“ +b(eM) | > 1} =P{|]a|M" + |b|M]| > 1}
>p{||a|M® + [b]M]| >1, M>0)
(4.1) 2
=P{|a|M" + |bjM>1 , M>0}
2P{M> |a|'1/2} = % P{|M| > |a|'1/2} .
Assume that (Qn) converges a.s. We have Qn= Xlr:=1 (Vk + fkkMk)Mk where

ok
Vi =73 1

Breiman (1968), p. 96), the a.s. convergence of (Qn) implies that

;i(fjk+fkj)Mj, k22, V, =0, By the conditional Borel-Cantelli lemma (cf.

T 2
kZIP{IVkMk+fkkMk| >1|M1,..., M _ 1< a.s.

It follows by (4.1) that ) P{IfklezJ >1} <», where the sum extends over all k for
which £, #0, which implies that 2:=1|fkk|p/2<°° , in view of the tail behavior of the
Mk's. Now, by Theorem 4.1, Dn converges a.s. and by the assumption Rn=Qn - Dn con-

verges a.s. as well, , 0

In view of Theorem 5.1 below and of Theorem 2.1, we have the following corollary

on the convergence in Lr, r <p, of the off-diagonal part of the quadratic form.

COROLLARY 4.1. If 0<r<p and

o k-1 !
DY £, + 6P Pes

ka2 jzl ik kj

then the sequence Rn=2: 45 E5KMMy converges in L¥ and a.s.

Proof: Here is a direct proof which does not use Theorems 2.1 and 5.1. By

k-1
the martingale property of R we have, with V, ijsl(fjk + fkj)Mj’ k22, v, =0,
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4.3
EIR_-R . |T=E| ?v Mk|rSConst §5|v Mk|r
n m+l kémk k=m k

n
=Const ) E|V, |E|M |¥
LBV DEM

n k-1 r/
=Const ) () |f +f, |p) P
k=m j=1

which proves the corollary.
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5. AUXILIARY RESULTS

The proof of Theorem 2.2 relies on the following technical property which,
roughly speaking, justifies the change of the order of summation in the series

ZJ (;k>j fjkek)Mj .

PROPOSITION S.1. Let E be a complete metric linear space, Xik

and (Yj) a sequence of non-gsero independent symmetric real random variables. If

S -j{ Xyp¥s>S

in probability as n+> then there exists a sequence (xj) cE such that for each j,

Xin”X; a8 n>e and the series § ijj converges a.s. to S.

Proof: Let ||+|| be a monotonic F-norm on E, i.e. |lax|| < ||x|| for |a]| <1
(which always exists by Rolewicz (1972), p. 16, Theorem 1.2.2). Fix j21 and let
a,b >0 be such that P(|Yj| >8}>b., Let €>0. For r2n2j we set c(r,n) =1 if
] 8(x;, - Xgp) || > € and c(p,n) =0 otherwise. Since for a symmetric pair of r,
vectors X,Y in E,

pClixll > s2p(ll 3 (x+M) > B
we obtain

n
bec(r,n) s P{|| Y, (xjr - xjn) || > €} < 2P{|| %— kzlvk(xkr - X ) | > .;i}

1 €
sap{|l 7 (s, -spll>F .
It then follows from the assumption that c(r,n)+0 as r,n+«, i.e. {xjr} as a
Cauchy sequence for every j, and by the completeness of E there exists xj ¢ E such
that xjn-ncj as n+o,
Let now € > 0 and let N be such that
1 €, €
P{|| 5 (8,-5)) I > 3t sz

for every r2nz2N. By the symmetry argument used above
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¥l

= P{ Yo(x, -x. )| zelse .

j:: " le jn ”

Keeping n fixed and letting r->> we get

n

P{J| § x.Y

)% j-Sn"z e}se .
- J:

EHRRIG

@;;, Thus ZJ 1% j J +S in probability and, since the Y's are independent, also a.s. [
R
o
’gf The following elementary proposition (cf. Szulga and Woyczynski (1983)) is
used in the proof of Theorem 3.1.
PROPOSITION 5.2. If for a sequence (W,) of real random variables
= (5.1) LPUw | >1) <=,
2 and
A
(5.2) LEMIC(W | s1)]| <o
then zlwkl <w q.a.
SR
% Proof: Indeed, let Y, =W I(|W |<1), 2, =W, -Y, . Then |W | =]y, |+]z,|.
A ZIYk| converges a.s. since E(Zlykll <= by (5.2), and XIZnI converges a.s. by the

Borel-Cantelli lemma. a

We now establish a more precise criterion for summability of stable r.v.'s

which is used in Section 4. For a symmetric p-stable r.v. X the quantity Cx is

defined by Eexp(itX) =exp(-cx|t|p) and satisfies

1/r = Const(r,p) c)l(/p , 0<r<p,

sy R E A7 B

T
lenL,-(EIXI )

and for independent symmetric p-stable r.v.'s (xk) ,

S

(5.3) czk‘kxk.E |ak|ch
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Definition 5.1. The r.v.’s (Xk) are jointly symmetric p-stable if for every

8equence (ak) with a finite number of nonsero elements the r.v. zka'kxk i8 symmetric
p-stable.

THEOREM 5.1. Let (Xk) be jointly symmetric p-stable r.v.'s with 0<p<2 and

let r>0. Then a necessary and sufficient condition for
T r
kle)(kl <w g3,

18 that for some 0<s<p,

EC ) |xk|r)s<°° when 0<rs1
k=1

ECY 1% 5%/ <o when 1< .
k=1

Proof: Assume X =(X), €&’ a.s. and define 9:2+£" by ¢(w) = (X, (w)), = X(w)
if (Xk(w))kelr and ®(w) =0 otherwise. Then ¢ induces a symmetric p-stable measure
p =ped) on £5. For x= (%)) € L5 define q(x) =2k|xk|r when 0<r<1 and
1
ax) = (5, I D"

r21) and by Theorem 3.2 in de Acosta (1975) we have for 0<s<p,

when r>1. Then q is a measurable seminorm on L% (a norm when

E{q(X())}® = foa* (X(w))dP(w) = !L,qscx)du(x) <
The converse is clear. 0

When 1<r<p<2 we can take s = r and the necessary and sufficicent condition

becomes .

<0 oo
LEIX[T<m or ] /Pea .
k=1 k=l
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5.4
When r =p, Theorem 5.1 gives
[ -] 00 lAl
(5.4) ) IXklp<°° a.s. if and only if E( )} ‘xklp)s( ’13) <o for some 0<s <p.
k=1 k=1

This necessary and sufficient condition simplifies to
o0

(5.5) ) cy (1+ |10g Cy ) <o
k=1 7k k

when the xk's are independent, by Schwartz's theorem (cf. e.g. Woyczynski (1978),

~p. 277), and when the xk's are of the form xk=zjfjij’ where the Mj's are indepen-

dent (cf. Corollary 3.1 and (5.3)). Since every sequence of jointly symmetric p-
stable r.v.'s (X,) is of the form X = [of, (t)dM(t), k=1,2,..., where M(t), Osts1,
is a stable motion (i.e. has independent stationary symmetric p-stable increments)

and [:Ifk(t)lpdt <w, ke1,2,... (cf. Kuelbs (1973)), we conjecture that (5.5) is

always a necessary and sufficient condition for (5.4).
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